Irrotational and Incompressible Ellipsoids in the First Post-Newtonian Approximation of General Relativity
نویسندگان
چکیده
First post-Newtonian (1PN) hydrostatic equations for an irrotational fluid which have been recently derived are solved for an incompressible star. The 1PN configurations are expressed as a deformation of the Newtonian irrotational Riemann ellipsoid using Lagrangian displacement vectors introduced by Chandrasekhar. For the 1PN solutions, we also calculate the luminosity of gravitational waves in the 1PN approximation using the Blanchet-Damour formalism. It is found that the solutions of the 1PN equations exhibit singularities at points where the axial ratios of semi-axes are 1 : 0.5244 : 0.6579 and 1 : 0.2374 : 0.2963, and the singularities seem to show that at the points, the irrotational Riemann ellipsoid is unstable to the deformation induced by the effect of general relativity. For stable cases (a2/a1 > 0.5244, where a1 and a2 are the semi-major and minor axes, respectively) we find that when increasing the 1PN correction, the angular velocity and total angular momentum increase, while the total energy and luminosity of gravitational waves decrease. These 1PN solutions will be useful when examining the accuracy of numerical code for obtaining relativistic irrotational stars. We also investigate the validity of an ellipsoidal approximation, in which a 1PN solution is obtained assuming an ellipsoidal figure and neglecting the deformation. It is found that for a2/a1 > 0.7, the ellipsoidal approximation gives a fairly accurate result for the energy, angular momentum, and angular velocity, although in the approximation we cannot find the singularities.
منابع مشابه
A simple model for accretion disks in the post-Newtonian approximation
p { margin-bottom: 0.1in; direction: ltr; line-height: 120%; text-align: left; }a:link { } In this paper, the evolution of accretion disks in the post-Newtonian limit has been investigated. These disks are formed around gravitational compact objects such as black holes, neutron stars, or white dwarfs. Although most analytical researches have been conducted in this context in the framework o...
متن کاملBar Mode Instability in Relativistic Rotating Stars: a Post–newtonian Treatment
We construct analytic models of incompressible, uniformly rotating stars in post–Newtonian (PN) gravity and evaluate their stability against nonaxisymmetric bar modes. We model the PN configurations by homogeneous triaxial ellipsoids and employ an energy variational principle to determine their equilibrium shape and stability. The spacetime metric is obtained by solving Einstein’s equations of ...
متن کاملOn the Accuracy of the Post-newtonian Approximation
We apply standard post-Newtonian methods in general relativity to locate the innermost circular orbit (ICO) of irrotational and corotational binary black-hole systems. We find that the post-Newtonian series converges well when the two masses are comparable. We argue that the result for the ICO which is predicted by the third post-Newtonian (3PN) approximation is likely to be very close to the “...
متن کاملA relativistic formalism for computation of irrotational binary stars in quasi equilibrium states
We present relativistic hydrostatic equations for obtaining irrotational binary neutron stars in quasi equilibrium states in 3+1 formalism. Equations derived here are different from those previously given by Bonazzola, Gourgoulhon, and Marck, and have a simpler and more tractable form for computation in numerical relativity. We also present hydrostatic equations for computation of equilibrium i...
متن کاملSolving the Darwin problem in the first post-Newtonian approximation of general relativity
We analytically calculate the equilibrium sequence of the corotating binary stars of incompressible fluid in the first post-Newtonian(PN) approximation of general relativity. By calculating the total energy and total angular momentum of the system as a function of the orbital separation, we investigate the innermost stable circular orbit for corotating binary(we call it ISCCO). It is found that...
متن کامل